Arakawa-Suzuki functors for Whittaker modules
نویسندگان
چکیده
منابع مشابه
Whittaker functors for G S p 4
1.1 One of the important technical tools in D. Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence ([3]) is the theory of Whittaker functors for GLn. In this paper we define analogous functors for GSp4 and study their properties. Let us first review the situation at the level of automorphic forms on G = Sp4. Let X be a smooth projective absolutely i...
متن کاملWhittaker Functors for Gsp 4 Sergey Lysenko
1.1 One of the important technical tools in D. Gaitsgory’s proof of the Vanishing Conjecture appearing in the geometric Langlands correspondence ([3]) is the theory of Whittaker functors for GLn. In this paper we define analogous functors for GSp4 and study their properties. Let us first review the situation at the level of automorphic forms on G = Sp4. Let X be a smooth projective absolutely i...
متن کاملWhittaker Modules for Graded Lie Algebras
In this paper, we study Whittaker modules for graded Lie algebras. We define Whittaker modules for a class of graded Lie algebras and obtain a one to one correspondence between the set of isomorphic classes of Whittaker modules and the set of ideals of a polynomial ring, parallel to a result from the classical setting and the case of the Virasoro algebra. As a consequence of this, we obtain a c...
متن کاملExtension functors of local cohomology modules
Let $R$ be a commutative Noetherian ring with non-zero identity, $fa$ an ideal of $R$, and $X$ an $R$--module. Here, for fixed integers $s, t$ and a finite $fa$--torsion $R$--module $N$, we first study the membership of $Ext^{s+t}_{R}(N, X)$ and $Ext^{s}_{R}(N, H^{t}_{fa}(X))$ in the Serre subcategories of the category of $R$--modules. Then, we present some conditions which ensure the exi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2019
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2019.07.027